Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons.

نویسندگان

  • G Chen
  • A N van den Pol
چکیده

Glutamate is the primary excitatory transmitter in axons innervating the hypothalamic suprachiasmatic nucleus (SCN) and is responsible for light-induced phase shifts of circadian rhythms generated by the SCN. By using self-innervating single neuron cultures and patch-clamp electrophysiology, we studied metabotropic glutamate receptors (mGluRs) expressed by SCN neurons. The selective agonists for group I (3,5-dihydroxy-phenylglycine), group II ((S)-4-carboxy-3-hydroxyphenylglycine), and group III ((+)-2-amino-4-phosphonobutyric acid) mGluRs all depressed the evoked IPSC in a subset (33%) of single autaptic neurons, suggesting a coexpression of all three groups of mGluRs in the same axon terminals of a single neuron. Other neurons showed a variety of combinations of mGluRs, including an expression of only one group of mGluR (18%) or coexpression of two groups of mGluRs (27%). Some neurons had no response to any of the three agonists (22%). The three mGluR agonists had no effect on postsynaptic gamma-aminobutyric acid (GABA) receptor responses, indicating a presynaptic modulation of GABA release by mGluRs. We conclude that multiple mGluRs that act through different second messenger pathways are coexpressed in single axon terminals of SCN neurons where they modulate the release of GABA presynaptically, usually inhibiting release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Thalamic microcircuits: presynaptic dendrites form two feedforward inhibitory pathways in thalamus.

In the visual thalamus, retinal afferents activate both local interneurons and excitatory thalamocortical relay neurons, leading to robust feedforward inhibition that regulates the transmission of sensory information from retina to neocortex. Peculiarly, this feedforward inhibitory pathway is dominated by presynaptic dendrites. Previous work has shown that the output of dendritic terminals of i...

متن کامل

Differential expression of metabotropic glutamate and GABA receptors at neocortical glutamatergic and GABAergic axon terminals

Metabotropic glutamate (Glu) receptors (mGluRs) and GABAB receptors are highly expressed at presynaptic sites. To verify the possibility that the two classes of metabotropic receptors contribute to axon terminals heterogeneity, we studied the localization of mGluR1α, mGluR5, mGluR2/3, mGluR7, and GABAB1 in VGLUT1-, VGLUT2-, and VGAT- positive terminals in the cerebral cortex of adult rats. VGLU...

متن کامل

Glutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats

The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...

متن کامل

Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders

Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 1998